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Abstract 

 The objective of this paper is to describe a new method for identification of a 

continuous-time multi- input and multi-output bilinear system.  The approach is to make 

judicious use of the linear-model properties of the bilinear system when subjected to a 

constant input.  Two steps are required in the identification process.  The first step is to 

use a set of pulse responses resulting from a constant input of one sample period to 

identify the state matrix, the output matrix, and the direct transmission matrix.  The 

second step is to use another set of pulse responses with the same constant input over 

multiple sample periods to identify the input matrix and the coefficient matrices 

associated with the coupling terms between the state and the inputs.  Numerical examples 

are given to illustrate the concept and the computational algorithm for the identification 

method.   

Introduction 

 System identification is a methodology used to characterize a dynamical or other 

engineering system with measurements of the input-output signals. Mathematicians and 

engineers have developed a number of approaches to address the identification problem.   

The identification of a linear time- invariant system is relatively well understood and 

theoretically well developed [1,2].   This is not true for the identification of a nonlinear 

system, although some progress has been made in the identification of nonlinear systems 

over the past few decades [3-19].   

 There is a class of nonlinear systems called bilinear systems whose dynamics are 

jointly linear in the state and the force variables.  It is a simple nonlinear extension of a 
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linear system. The concept of bilinear systems was introduced in the 1960’s (see the 

surveys of Refs. [5] and [6]). References [7] and [8] provide a survey of bilinear-related 

system-theory methods and their contributions to problems such as stabilization, 

controllability, and observability. Bilinear systems have been studied extensively and 

applied successfully to several problems [15].  Recently, research activities in 

identification of bilinear systems have been focused on the so-called “discrete-time” 

model identification [19].  The discrete-time model is an approximation obtained by 

linearizing the continuous one with a method such as the finite difference. In contrast, we 

focus on the identification of a continuous-time bilinear system without any 

approximation. 

A new method is introduced in this paper for identification of a continuous-time 

multi- input and multi-output bilinear system.  When the input of a bilinear system is a 

constant, the bilinear system becomes a linear system. This special characteristic is the 

basis for the identification method.  Two steps are required for the identification process. 

The first step begins with generating a set of pulse responses with a constant input 

applied one at a time over one sample period.  The pulse responses are then used to form 

a Hankel matrix consisting of system Markov parameters to identify the state matrix, the 

output matrix, and the direct transmission matrix.  The identification step is quite similar, 

if not identical, to the identification of a linear system [1,2]. This step establishes a 

specific set of coordinates for the whole identification process. This set of coordinates is 

not unique, depending mainly on the size of Hankel matrix and the resulting choice of 

matrix that represents the observability matrix.  The second step starts by generating 

another set of pulse responses with the same constant input as the first step but for 

multiple sample periods. These multiple-pulse responses are used to define another set of 

Markov parameters to form a Hankel- like matrix for each input.  The observability matrix 

obtained in the first step is then applied to the Hankel- like matrix to compute the 

corresponding controllability matrix of the input to identify the input vector and the 

coefficient matrix associated with the coupling terms between the state and the input.   

Simple examples are given to demonstrate how to apply the method to identify a 

continuous-time bilinear system and how to transfer the identified model from one set of 
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coordinates to the other set of coordinates.  The coordinate transformation also serves as 

a way of verifying the identified system.     

Basic Formulation 

Let x and Ac be the state vector of dimension 1n ×  and its corresponding state 

matrix of n n× , and u and Bc be the input vector of 1r ×  and its corresponding input 

matrix of n r× .  Subscript c signifies the associated quantity in the continuous-time 

domain.  The bilinear state equation in the continuous-time domain is commonly 

expressed by 

 
1

r

c c ci i
i

x A x B u N xu
=

= + + ∑&  (1) 

where the coupling term xui between the state vector x and each individual ui (i = 1,…, r) 

in the input vector u is weighted by the matrix Nci of n n× .  The measurement equation is 

identical to the one for a linear system that is commonly described by 

 y Cx Du= +  (2) 

where y is the output measurement vector of 1m × , C is the output matrix of m n×  and D 

is the direct transmission matrix of m r× .   

 For simplicity, consider only one input at a time.  Equation (1) reduces to 

 c ci i ci ix A x b u N xu= + +&  (3) 

where bci is the ith column of Bc associated with the input uk. Assuming i iu υ=  where iυ  

is a pre-specified constant, the continuous-time state equation (3) further reduces to 

 ( )c i ci ci ix A N x bυ υ= + +&  (4) 

The discrete-time model of this system is  

 ( 1) ( ) ;    1,2, ,i ix k A x k b i r+ = + = …  (5) 

with the measurement equation 

 ( ) ( )i iy k Cx k d= +  (6) 

where di is the ith column of D associated with the input uk and  

 ( )               i ciA N t
iA e υ+ ∆=  (7) 

 ( )

0
 i ci

t A N
i ci ib e d bυ τ τ υ

∆ += ∫  (8) 
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 i i id d υ=  (9) 

The quantity t∆  is the time interval for data sampling.  Assuming that the initial state 

x(0) is a zero vector, i.e., 1(0) 0nx ×= , the state response for the discrete-time model, Eq. 

(5), can be computed by: 

 

1

2

3 2

1 2

(0) 0

(1) (0)

(2) (1)

(3) (2)

( ) (1)

n

i i i

i i i i i

i i i i i i k

N N N
i i i i i i i i i

x

x A x b b

x A x b Ab b

x A x b A b Ab b

x N A x b A b A b A b b

×

− −

=

= + =
= + = +
= + = + +

= + = + + + +
M

L

 (10) 

 

 After t N t> ∆ , let ( ) 0iu t = .  The state equation (3) reduces to the simple form 

 cx A x=&  (11) 

Its discrete-time model is 

 ( 1) ( )x k Ax k+ =  (12) 

where 

 A tA e ∆=  (13) 

The free decay response after t N t> ∆ becomes 

 

( )
( )

( )

1 2

2 2 1 2

1 2

( 1) ( )

( 2) ( )

( ) ( )

N N
i i i i i i i

N N
i i i i i i i

N N
i i i i i i i

x N Ax k A A b A b A b b

x N A x k A A b A b A b b

x N A x k A A b A b A b b

− −

− −

− −

+ = = + + + +

+ = = + + + +

+ = = + + + +l l

L
L

M
l L

 (14) 

where l  is an integer indicating the data length of the free-decay response.   

 From Eqs. (2), (10), and (14), the measurement quantities ( )iy k for 

0,1, ,k N= +L l  due to the force excitation of 
k ku υ=  can thus be computed as 
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( )

( )
( )

( )

1 2

1 2

1 2

(0) (0)

(1) (1)

(2) (2)

( ) ( )

( 1) ( 1)

( ) ( )

i i i

i i i i

i i i i i i

N N
i i i i i i i i

N N
i i i i i i i i

N N
i i i i i i i i

y Cx d d

y Cx d Cb d

y Cx d C Ab b d

y N Cx N C A b A b A b b

y N Cx N CA A b A b A b b

y N Cx N CA A b A b Ab b

− −

− −

− −

= + =

= + = +

= + = + +

= = + + + +

+ = + = + + + +

+ = + = + + + +l

M
L

L
M

l l L

 (15) 

The upper portion, (0), (1), , ( )y y y NL , of Eq. (15), corresponds to the multiple-pulse 

response resulting from a constant force over multiple sample periods. But the lower 

portion, ( 1), ( 2), , ( )y N y N y N+ + +L l , corresponds to the free-decay response.   

 It is clear that the system matrices/vectors, , , , ,c ci ci iA b N C d , are embedded in the 

output quantities shown in Eq. (15).  First of all, we need to use the output measurements 

to extract the discrete- time matrices/vectors, , ,  , ,i i iA C A b d .  It is worth to stress that the 

multiple-pulse response and the free-decay response result from two different discrete 

models.   

The free-decay response, ( 1), ( 2), , ( )y N y N y N+ + +L l , after t N t> ∆  is quite 

similar, if not identical, to the pulse response for a linear system.  Any linear system 

identification technique may be applied to compute the state matrix A and the output 

matrix C.  The key idea is to make judicious use of this linear portion of the bilinear 

system.  The identification problems for linear systems have been extensively studied and 

many good techniques have been developed and implemented.   

System Identification Method 

 The identification method requires two steps. The first step is to identify the state 

matrix Ac, the output matrix C, and the data transmission matrix D.  The second step is to 

determine the input matrices Bc, and Ni for the coupling term between the state vector x 

and the ith input ui. 



 6

Identification of Ac, C, and D: 

First, let us apply a pulse of magnitude 1υ  to the system for one time step t∆  to 

generate the pulse response for the first input u1.  From Eq. (15) for N = 1, the pulse 

response has the following expression. 

 

1 1

1 1

1 1

1 1

(0)

(1)

(2)

( 1)

y d

y Cb

y CAb

y C A b

=
=

=

+ = l
M

l

 (16) 

All other input pulse responses can be similarly generated to yield  

 

2 2

2 2

2 2

2 2

(0) (0)
(1) (1)

(2) (2)

( 1) ( 1)

r r

r r

r r

r r

y d y d
y Cb y Cb

y CAb y CAb

y CA b y CA b

= =
= =
= =

+ = + =l l

L
L
L

M M M
l L l

 (17) 

Equation (17) is obtained by replacing the subscript 1 representing the first input with the 

other input integers 2 through r.  Let us define the system Markov parameters to be  

[ ]
[ ]
[ ]

[ ]

1 1 2 1 2

1 1 2 1 2

1 1 2 1 2

1 1 2 1 2

(0) (0) (0) (0)

(1) (1) (1) (1)

(2) (2) (2) (2)

( 1) ( 1) ( 1) ( 1)

r r

r r

r r

r r

Y y y y d d d D

Y y y y Cb Cb Cb

Y y y y CAb CAb CAb

Y y y y C A b CA b C A b

 = = = 
 = =  

 = =  

 + = + + + =  
l l l

L L
L L
L L

M
l l l L l L

 (18) 

The use of the subscript 1 for Y1(k) (k = 1,2,…, 1+l ) is intended to signify one-time-step 

pulse response. Equation (18) provides the basic parameters for system identification.  

Indeed, let us form a Hankel matrix as follows. 

1 1 1

1 1 1 1
1 1 1 1

1
1 1 1

(1) (2) ( )
(2) (3) ( 1)

( ) ( 1) ( 1)

Y Y Y C
Y Y Y CA

H B AB A B

Y Y Y CA

β

α

β
β

α α α β

−

−

   
   +     = =     
   + + −   

L
L LM M O M M
L

(19) 

where 
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 1 1 2 rB b b b =  L  (20) 

The matrix product on the right-hand side of Eq. (19) shows the relationship between the 

system Markov parameters and the discrete-time system matrices.  Obviously the Hankel 

matrix H1 has the rank n that is the order of the state matrix A if we choose α  and β  

such that mα and rβ are larger than or equal to n where m is the number of outputs and r 

is the number of inputs.  Using the singular value decomposition (SVD) to decompose 

the Hankel matrix H1 yields 

 1 1 1 1
TH U V= ∑  (21) 

where 1Σ of n n×  is a square matrix containing n non-zero singular values. The matrix 

1U  is of dimension m nα ×  and the matrix 1V  is of dimension r nβ × .  

 From Eq. (19), one may choose 

 1

1

C
CA

U

CAα −

 
 
 =
 
 
 

M  (22) 

and   

 1
1 1 1 1 1

TV B AB A Bβ − Σ =  L  (23) 

This choice is not unique.  Many other choices are also valid.  The other common choice 

is 

 1/2
1 1

1

C
CA

U

CAα −

 
 
 ∑ =
 
 
 

M  (24) 

and  

 1/2 1
1 1 1 1 1

TV B AB A Bβ − Σ =  L  (25) 

Note that the choice of Eq. (22) has the advantage that  

 †
1 1 1 1
T T

n nU U I U U×= ⇒ =  (26) 

because 1U  is a unitary matrix resulting from the property of singular value 

decomposition.  Nevertheless, the choice of Eqs. (24) and (25) has a nice property of 
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balanced coordinates. Equation (22) or (24) is commonly called observability matrix 

whereas Eq. (23) or (25) is referred to as the controllability matrix.   

Equations (22) and (23) produce the following solutions 

 1the first  rows of       C m U=  (27) 

 1 1 1the first  columns of TB r V= Σ  (28) 

Since the choices of controllability and observability matrices are not unique, the 

identified matrices C and 1B  are not unique.  To determine the state matrix A, let us first 

define and observe the following matrices.  

 
1

2

C
CA

U

CAα

↑

−

 
 
 =
 
 
 

M  (29) 

and 

 
2

1 1

1

CA
CA

U U A

CAα

↓ ↑

−

 
 
 = =
 
 
 

M  (30) 

Deleting the last m rows of 1U  forms the matrix 1U ↑  whereas deleting the first m rows of 

1U  yields the matrix 1U ↓ . It is then clear that the state matrix A can be determined by 

 †
11A U U ↓↑=  (31) 

For the identified state matrix to have the rank n, both ( 1)m nα − ×  matrices 1U ↑  and 1U ↓  

must also have the rank n.  This implies that α  must be chosen such that ( 1)m nα − ≥ , 

i.e., m nα > .  Of course, we have assumed that the pulse force iυ  for i = 1, 2,…, r are  

chosen so that all system modes are excitable and observable. 

With the aid of Eq. (13), Eq. (31) produces the continuous-time state matrix as 

 †
11

1 1
log( ) log( )cA A U U

t t ↓↑
= =

∆ ∆
 (32) 

Note that the conversion from a discrete-time state matrix to a continuous-time state 

matrix may not unique.   



 9

To this end, we have determined cA  from Eq. (32), C  from Eq. (27), 1B  from Eq. 

(28), and D  from Eq. (18).  The original transmission matrix D can be recovered using 

Eq. (9) to have 

 [ ]1 2 diag 1 1 1 rD D υ υ υ= L  (33) 

Let us stress that the identified matrices cA , 1B  and C  are not uniquely determined but D 

is coordinate invariant and so is uniquely determined. 

Identification of Bc, and Nci: 

The second step begins with generating the two-sample-period pulse response for 

all inputs with one input at a time, i.e., a force is applied with the same magnitude as 

above to the system for two time steps 2 t∆ .  From Eq. (15) for N = 2, we obtain 

 

1 1

1 1 1

1 1 1 1

1 1 1 1

(0) (0)
(1) (1)

(2) (2)

( 2) ( 2)

r r

r r r

r r r r

r r r r

y d y d
y Cb d y Cb d

y C A b b y C A b b

y CA A b b y CA A b b

= =
= + = +

   = + = +   

   + = + + = +   
l l

L
L
L

M M M
l L l

 (34) 

Now define the system Markov parameters from the two-sample-period pulse response as  

 

[ ]
( ) ( ) ( )

[ ]
( ) ( ) ( )

[ ]
( ) ( ) ( )

2 1 2

1 1 1 2 2 2

2 1 2

1 1 1 2 2 2

2 1 2

1 1 1 2 2 2

(2) (2) (2) (2)

(3) (3) (3) (3)

( 2) ( 2) ( 2) ( 2)

r

r r r

r

r r r

r

r r r

Y y y y

C Ab b C A b b C A b b

Y y y y

CA A b b CA A b b CA A b b

Y y y y

CA A b b CA A b b CA A b b

=

 = + + + 
=

 = + + + 

+ = + + +

 = + + + 
l l l

L
L

L
L

M
l l l L l

L

 (35) 

Subscript 2 for Y2(k) (k = 1,2,…, 1+l ) signifies two-sample-period pulse response. Let 

us form a m rα ×  matrix as follows. 

 

2

2
2 2

1
2

(2)
(3)

( 1)

Y C
Y CA

H B

Y CAαα −

   
   
   = =
   
   +   

M M  (36) 
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where 

 ( ) ( ) ( )2 1 1 1 2 2 2 r r rB Ab b A b b A b b = + + + L  (37) 

With the help of Eq. (22), the n r×  matrix 2B  in Eq. (36) can be solved by  

 

†

†
2 2 1 2

1

C
CA

B H U H

CAα −

 
 
 = =
 
 
 

M  (38) 

Similarly, we may continue the process to generate three-sample-period pulse 

response, four-sample-period pulse response, etc. up to the p-sample-period pulse 

response for all inputs with one input at a time using a force of the same magnitude as 

earlier applied to the system for p time periods p t∆ . From Eq. (15) for N = p, we have 

 

( ) ( )
( ) ( )
( ) ( )

( ) ( )

1 1
1 1 1 1

1 1
1 1 1 1

2 1 2 1
1 1 1 1

1 1
1 1 1 1

( ) ( )

( 1) ( 1)

( 2) ( 2)

( ) ( )

p p
r r r r

p p
r r r r

p p
r r r r

p p
r r r r

y p C A b b y p C A b b

y p CA A b b y p CA A b b

y p CA A b b y p CA A b b

y p CA A b b y p CA A b b

− −

− −

− −

− −

= + + = + +

+ = + + + = + +

+ = + + + = + +

+ = + + + = + +l l

L L L
L L L
L L L

M O M
l L L l L

 (39) 

Now define the system Markov parameters for the p-sample-period pulse response as  

[ ]
( ) ( ) ( )

[ ]
( ) ( ) ( )

[ ]

1 2

1 1 1
1 1 1 2 2 2

1 2

1 1 1
1 1 1 2 2 2

1 2

1
1 1

( ) ( ) ( ) ( )

   

( 1) ( 1) ( 1) ( 1)

   

    

( ) ( ) ( ) ( )

   l

L
L L L L

L
L L L L

M
l l l L l

p r

p p p
r r r

p r

p p p
r r r

p r

p

Y p y p y p y p

C A b b C A b b C A b b

Y p y p y p y p

CA A b b CA A b b CA A b b

Y p y p y p y p

CA A b

− − −

− − −

−

=

 = + + + + + + 
+ = + + +

 = + + + + + + 

+ = + + +

= ( ) ( ) ( )1 1
1 2 2 2

l lL L L Lp p
r r rb CA A b b CA A b b− − + + + + + + 

(40) 

Let us form a m rα × matrix as follows. 

 

1

( )
( 1)

( 1)

p

p
p p

p

Y p C
Y p CA

H B

Y p CAαα −

   
   +   = =   
   + −    

M M  (41) 
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where 

 ( ) ( ) ( )1 1 1
1 1 1 2 2 2L L L Lp p p

p r r rB A b b A b b A b b− − − = + + + + + +   (42) 

With the help of Eq. (22), the n r× matrix pB  in Eq. (41) can be solved by  

 

†

†
1

1

p p p

C
CA

B H U H

CAα −

 
 
 = =
 
 
 

M  (43) 

To determine cB , let us first observe the matrices 1 2,  , , pB B BL  defined in Eqs. 

(20), (37), and (42), and determined by Eqs. (28), (38), and (43), i.e., 

 
( ) ( ) ( )

( ) ( ) ( )

1 1 2

2 1 1 1 2 2 2

1 1 1
1 1 1 2 2 2

L
L

M
L L L L

r

r r r

p p p
p r r r

B b b b

B A b b A b b A b b

B A b b A b b A b b− − −

 =  
 = + + + 

 = + + + + + + 

 (44) 

Applying the recursive formula 

 1;   2,3, ,k kB B k p−− = L  (45) 

yields the controllability- like matrices,  

 1 ; 1,2, ,p
i i i i i ib A b A b i r− = = £ L L  (46) 

To determine the state matrix iA , let us first define the two matrices 

 2p
i i i i i ib Ab A b−
←  =  £ L  (47) 

and  

 2 1p
i i i i i i i i iAb A b A b A−
→ ← = = £ L £  (48) 

Deleting the last r columns of i£  forms the matrix i←£  whereas deleting the first r 

columns of i£  yields the matrix i→£ .  Equations (47) and (48) produce the solutions: 

 the first  columns of i ib r= £  (49) 

 †                           i i iA → ←= £ £  (50) 
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for i = 1, 2,…, r.  For the identified matrix iA  to have the rank n, both ( 1)n p× −  

matrices i←£  and i→£  must also have the rank n.  It implies that p must be chosen such 

that 1p n− ≥ .  This indicates that the system identification method requires a total of at 

least (n +1) sets of responses generated by (n +1) different time periods of pulse input. 

Based on Eqs. (7) and (8) for the definitions of iA  and ib , taking the conversion 

from discrete-time to continuous-time produces 

 †1 1
log( ) log( )c i ci i i iA N A

t t
υ → ←+ = =

∆ ∆
£ £  (51) 

and  

 
1

2 2 31 1 1
I ( )( ) ( ) ( )

2! 3!ci n n c i ci c i ci i
i

b A N t A N t bυ υ
υ

−

×
 = + + ∆ + + ∆ +  

L  (52) 

for i = 1, 2,…, r where In n×  is a n n×  identity matrix, that, in turns, yields 

 [ ]1 2c c c crB b b b= L  (53) 

Again, one should be cautious to take the conversion because of its non-uniqueness 

problem [1].  From Eqs. (32) and (51), the matrices ciN  ( i = 1, 2,…, r) are determined by 

 †
11

1 1 1
log( ) log( ) log( )ci i c i i

i i

N A A U U
t tυ υ

+
→ ← ↓↑

   = − = −  ∆ ∆ 
£ £  (54) 

To this end, we have identified all continuous-time system matrices Ac, Bc, Nci, C, 

and D for the bilinear system described by Eqs. (1) and (2) from pulse responses 

generated by pre-specified pulse inputs.   

Coordinate Transformation 

 Let the state vector x of 1n ×  in Eqs. (1) and (2) be transformed to the new state 

vector x%  of 1n ×  by the nonsingular transformation matrix Φ  of n n× .  Equations (1) 

and (2) become 

 
1

& % % %% % %r

c c ci i
i

x A x B u N xu
=

= + + ∑  (55) 

and 

 y Cx Du= +% %  (56) 

where 
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1

1

1

1

c c

ci ci

c c

x x

A A

N N

B B

C C

%
%
%
%
%

−

−

−

−

= Φ

= Φ Φ

= Φ Φ
= Φ

= Φ

 (57) 

It is clear that the transformed matrix cA%  is similar to the original matrix cA  in the sense 

that their eigenvalues are identical.  The same statement is also true for the matrices ciN%  

and ciN .  One question that may arise is, for given two sets of matrices representing the 

same bilinear system, what the transformation matrix should be to convert from one 

coordinate to the other. 

 First, form the observability matrices for both sets of system matrices 

 

1

c

n
c

C
CA

Q

CA −

 
 
 =
 
 
 

M  (58) 

and 

 

1

c

n
c

C
CA

Q

CA −

 
 
 =  
 
  

%
% %%
M

% %
 (59) 

Substituting the relationship from Eq. (57) yields 

 

 

11

cc

nn
cc

CC
CACA

Q Q

CACA

%
% %%

MM
% % −−

   
   
   = = Φ = Φ   
   
    

 (60) 

that in turn provide the following solution for computing the transformation matrix Φ  

 

 †Q Q%Φ =  (61) 
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This transformation matrix Φ  will transform the original system coordinate to another 

system coordinate without changing the input-to-output map. 

Numerical Example 

Consider the following example presented in Ref. [4]  

 1 1 2 2c c c cx A x B u N xu N xu

y Cx

= + + +
=

&
 (62) 

where 

 

[ ]

1 2

1 0 0 0 1 1
;   ;   

1 2 1 1 0 0

1 0
;   0 1

0 1

c c c

c

A N N

B C

−     = = =     −     
 

= =  

 (63) 

Assume that we don’t know the order of the system.  Let us generate five sets of data 

with the time period 1t∆ =  second. The first set of data with one input at a time is 

generated by a unit force of period 1 second.  The second set of data with one input at a 

time is obtained by applying a unit force of period 2 seconds and the fifth set of data is 

computed with a unit force of period 5 seconds.  The total of data points is set to be 20 

for each data record.   

 Figure 1 shows a total of 10 ( p m r× × ) responses from 2 inputs (r = 2), 1 output 

(m =1), and 5 different multiple-pulse inputs (p = 5).  Each response sampled at 1 Hz has 

20 data points.  These ten responses are obtained by numerically integrating the bilinear 

system shown in Eq. (62).  With 5α =  and 6β = , the Hankel matrix H1 shown in Eq. 

(19) should have the size of 5 12×  ( m rα β× ).  The state matrix and the output matrix 

identified from this Hankel matrix is 

 [ ]1.0629 3.9782
;   0.9355 0.3497

0.0148 1.9371cA C
− 

= = − − 
% %  (64) 

The singular values of this Hankel matrix are  

 [ ]1 diag 0.8347 0.0543 0 0 0∑ =  

implying that the order of the system is n = 2.  The other matrices Hk for k = 2, 3, …, p 

shown in Eqs. (36) and (41) are of the size of 5 2× , that produce the matrices 
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1 2 5,  , ,  B B BL  of 2 2×  each shown in Eq. (44), and in turn yield 1£  and 2£  of 2 5×  

each shown in Eq. (47).  The Bc, Nc1, and Nc2 can thus be identified as 

 
1 2

1.7752 3.2911 0.1678 0.3111
;    

0.4182 0.7752 0.4489 0.8322

0.0929 0.9824
0.2484 0.2314

c c

c

N N

B

   = =   − −   
− − 

=  − 

% %

%
 (65) 

The quality of the identification of the system is evaluated next.  The following 

transformation matrix is computed from Eq. (61) 

 
0.8715 3.6998
0.9355 0.3497

− − 
Φ =  − 

 (66) 

the matrices 1,  ,  ,  c c cA B C N% %% %  and 2 cN% would be transformed by using Eq. (57) to become 

Ac, Bc, C, Nc1, and Nc2 shown in Eq. (63). 

 Let us examine another case where we keep the unit force for the first input but 

change to 0.5 for the second input. Figure 2 shows the 10 multiple-pulse responses.  

Applying the same identification procedure as above, we obtain the following system 

matrices  

 [ ]0.9509 3.9503
;   0.9253 0.3760

0.0131 2.094cA C
− 

= = − − 
% %  (67) 

and 

 
1 2

1.8543 3.2168 0.1898 0.3292
;    

0.4925 0.8543 0.4670 0.8102

0.0998 0.9755
0.2457 0.2591

c c

c

N N

B

   = =   − −   
− − 

=  − 

% %

%
 (68) 

with the transformation matrix 

 
0.9757 3.6737
0.9253 0.3760

− − 
Φ =  − 

 (69) 

Note that the Hankel singular values are  

 [ ]1 diag 0.6753 0.0489 0 0 0∑ =  

This set of system matrices also represents the bilinear system, because it can be 

transformed back to the original system exactly. 
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Figure 1: Five sets of pulse responses sampled at 1 Hz from two inputs of unit pulse. 

0 5 10 15 20
0

0.5

1

1.5

2
 

St
ep

 R
es

po
ns

e

Time (sec)

First input (unit step)

Second input (1/2 unit step) 

 

Figure 2: Five sets of pulse responses sampled at 1 Hz from two different-size inputs. 
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Concluding Remarks 

 A new method is introduced for identification of a continuous-time multi- input 

and multi-output bilinear system.  The approach is to make judicious use of the linear-

model properties of the bilinear system when subjected to a constant input.  It has been 

shown in this paper that a bilinear system can be treated as a combination of two linear 

systems in the identification process.  The first linear system is the one obtained by 

deleting the nonlinear terms of the bilinear system.  The second linear system is given by 

assuming a constant input.  Due to this latter property, the identification process for the 

bilinear system becomes a combination of two linear-system identification processes.  

The key is to combine these two linear-system identification processes in the same 

coordinate system. The resulting identified system matrices would be similar to the 

original ones in the sense that they represent the same bilinear system but in different 

coordinates.  With a proper coordinate transformation, both the original model and the 

identified model are identical.   
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